kgdc.net
当前位置:首页 >> lim(sinx_tAnx)/x^2ArCtAnx,x趋于0 >>

lim(sinx_tAnx)/x^2ArCtAnx,x趋于0

先可以求ln(sinx^tanx)的极限lim(x->Л/2)tanx*lnsinx=lim(x->Л/2)lnsinx/(1/tanx)=lim(x->Л/2)[(1/sinx)*cosx]/[-(sinx)^2-(cosx)^2/(sinx)^2]=lim(x->Л/2)1/2*sin2x=0(lnsinx/(1/tanx),0/0型,洛必达)所以lim(x->Л/2)sinx^tanx=e^0=1

原式=limx→0 [tanx-tan(sinx)]/x^3*limx→0 sinx/x*limx→0 x/arctanx =limx→0 [1/cos^2x-cosx/cos^2(sinx)]/3x^2*1*1 =limx→0 [cos^2(sinx)-cos^3x]/3x^2*limx→0 1/[cos^2x*cos^2(sinx)] =limx→0 [-2cos(sinx)sin(sinx)cosx+3cos^2xsinx]/6x*1 =l...

1、本题是无穷小比无穷小型不定式; 2、本题用麦克劳林级数展开,是最快捷的计算方法; 3、下面的图片解答中,开始时是用的罗毕达求导法则, 但是若一直使用罗毕达法则,将会困难重重,运算量非常大。 在接下去的计算中,又运用了三角恒等式、分...

原式=limx→0 [tanx-tan(sinx)]/x^3*limx→0 sinx/x*limx→0 x/arctanx =limx→0 [1/cos^2x-cosx/cos^2(sinx)]/3x^2*1*1 =limx→0 [cos^2(sinx)-cos^3x]/3x^2*limx→0 1/[cos^2x*cos^2(sinx)] =limx→0 [-2cos(sinx)sin(sinx)cosx+3cos^2xsinx]/6x*1 =l...

洛必达法则 结果得-1

=1

sinA=BC/AB A=arcsinBC/AB tan和sin形式一样

就这样吧,再化简会更复杂

当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~x/lna

正弦、正切、反正弦和反正切都可以写成x加或减一个ax^3,再加或减比三阶更高阶的无穷小,任意两个相减都得到ax^3加或减比三阶更高阶的无穷小0(x^3),o(x^3)可以忽略。 即x-sinx是x的三阶无穷小,其他几个都和这个类似

网站首页 | 网站地图
All rights reserved Powered by www.kgdc.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com